SINGUIARITIES OF THE STRESS-STRAIN STATE OF A PLATE IN THE NEIGHBORHOOD OF AN EDGE

(OSOBENNOSTI NAPRIAZHENNO-DEFORMIROVANNOGO SOSTOIANIIAPLITY V OKRESTNOSTI REBRA)

PMM Vol. 31, No. 1, 1967, Pp. 178-186
O.K. AKSENTIAN
(Rostov-on-Don)
(Received May 3, 1966)

In many problems in elasticity, the numerical evaluation of solutions requires that the behavior of the components in the stress-strain state be known in the neighborhood of singular points or lines on the surface of the body under consideration. This permits the approximation of the solution in the most convenient manner and the construction of an approximate process for its determination. The papers of Fufaev [1 and 2], and Kondrat'ev [3 and 4] are devoted to the solution of the Laplace, Poisson and elliptic equations in the regions having nonsmooth boundaries. Williams [5 and 6] and Ufliand [7] have established the character of stress singularities at the corner of a plane wedge for various boundary conditions on its edges. The aim of the present paper is to obtain the singularities of the state of stress in a nonhomogeneous plate in the neighborhood of edge points, i. e. points of intersection of the side surface with the face of a plate. The method used permits the determination of the character of the singularities without directly solving the boundary problem.

1. For greater generality, assume that the side surface Γ_{2} is at an arbitrary angle $\alpha_{2}\left(0<\alpha_{2} \leq 2 \pi\right)$ to the face Γ. The loading conditions on these surfaces in the neighborhood of the edge will be formulated

Fig. 1 below. In addition, let us assume that the plate is nonhomogeneous, and consists of two bodies which are rigidly joined along the cylindrical surface Γ_{l}, which passes through the plate edge L. The generator of this surface is inclined at an angle $\alpha_{1}\left(0<\alpha_{1} \leq 2 \pi\right)$ to the plate surface (Fig. 1).

Let G_{1} and m_{1} be, respectively, the shear modulus and Poisson's ratio for the material of the first body, bounded by the surfaces Γ and Γ_{1}, while G_{2} and m_{2} are the corresponding values for the second body, bounded by the surfaces Γ_{1} and Γ_{2}.
Consider a sufficiently small neighborhood of point A on edge L. Introduce an orthogonal curvilinear coordinate system ρ, φ, S (Fig. 1).

Here $M N$ is a perpendicular to the surface Γ from some point M lying inside the neighborhood under investigation: $N P$ is the normal to the edge L, lying on that surface. The curvilinear coordinates of M are defined in the following manner: ρ is the distance from M to $P: \varphi$ is the angle between $N P$ and $P M$, and S is the distance from A to P measured along the curve L (the arrows on the sketcl indicate the positive coordinate directions).

Let us write the equilibrium equations in this coordinate system

$$
\begin{align*}
& \frac{2(m-1)}{m-2}\left[-\frac{R(R-2 \rho \cos \varphi)}{\rho^{2}(R-\rho \cos \varphi)^{2}} u_{\rho}+\frac{R-2 \rho \cos \varphi}{\rho(R-\rho \cos \varphi)} \frac{\partial u_{\rho}}{\partial \rho}+\frac{\partial^{2} u \rho}{\partial \rho^{2}}\right]+ \\
& +\frac{3 m-4}{m-2}\left[\frac{R \cos \varphi}{(R-\rho \cos \varphi)^{2}} \frac{\partial u_{s}}{\partial s}-\frac{1}{\rho^{2}} \frac{\partial u_{\varphi}}{\partial \varphi}\right]+\left[\frac{3 n-4}{m-2} \rho \cos \varphi-R\right] \frac{\sin \varphi}{(R-\rho \cos \varphi)^{2} \rho} u_{\varphi}+ \\
& +\frac{m}{m-2}\left[\frac{R}{R-\rho \cos \varphi} \frac{\partial^{2} u_{s}}{\partial \rho \partial s}+\frac{1}{\rho} \frac{\partial^{2} u_{\varphi}}{\partial \rho}+\frac{\sin \varphi}{R-\rho \cos \varphi} \frac{\partial u_{\varphi}}{\partial_{p}}\right]-\frac{R R_{s}{ }^{\prime} \cos \varphi}{(R-\rho \cos \varphi)^{3}} u_{s}- \\
& -\frac{R \rho \cos \varphi}{(R-\rho \cos \varphi)^{3}} \frac{\partial u_{\rho}}{\partial s}+\frac{R^{2}}{(R-\rho \cos \varphi)^{2}} \frac{\partial^{2} u_{\rho}}{\partial s^{2}}+\frac{\sin \varphi}{\rho(R-\rho \cos \varphi)} \frac{\partial u_{\rho}}{\partial \varphi}+\frac{1}{\rho^{2}} \frac{\partial^{2} u_{\rho}}{\partial \varphi^{2}}=0 \tag{1.1}\\
& \frac{2(m-1)}{m-2}\left[\frac{R \sin \varphi}{\rho(R-\rho \cos \varphi)^{2}} u_{\rho}+\frac{\sin \varphi}{\rho(R-\rho \cos \varphi)} \frac{\partial u_{\varphi}}{\partial \varphi}+\frac{1}{\rho^{2}} \frac{\partial^{2} u_{\varphi}}{\partial \varphi^{2}}\right]- \\
& -\frac{3 m-4}{m-2} \frac{R \sin \varphi}{(R-\rho \cos \varphi)^{2}} \frac{\partial u_{s}}{\partial s}+\frac{m}{m-2}\left[\frac{1}{\rho} \frac{\partial^{2} u_{\rho}}{\partial \rho \partial \varphi}+\frac{R}{\rho(R-\rho \cos \varphi)} \frac{\partial^{2} u_{s}}{\partial \varphi \partial s}\right]+ \\
& +\frac{1}{m-2} \frac{1}{\rho^{2}(R-\rho \cos \varphi)}\left\{\left[(3 m-4) \frac{\rho R \cos \varphi}{R-\rho \cos \varphi}-(m-2) \frac{R^{2}}{R-\rho \cos \varphi}-\right.\right. \\
& \left.\left.-2(m-1) \frac{\rho^{2}}{R-\rho \cos \varphi}\right] u_{\varphi}+\lfloor(3 m-4)(R-\rho \cos \varphi)-m \rho \cos \varphi] \frac{\partial u_{\rho}}{\partial \varphi}\right\}+ \\
& +\frac{R-2 \rho \cos \varphi}{\rho(R-\rho \cos \varphi)} \frac{\partial u_{\varphi}}{\partial \rho}+\frac{\partial^{2} u_{\varphi}}{\partial \rho^{2}}-\frac{R R_{s}{ }^{2} \cos \varphi}{(R-\rho \cos \varphi)^{3}} \frac{\partial u_{\varphi}}{\partial s}+ \\
& +\frac{R R_{s}^{\prime} \sin \varphi}{(R-\rho \cos \varphi)^{3}} u_{s}+\frac{R^{2}}{(R-\rho \cos \varphi)^{2}} \frac{\partial^{2} u_{\varphi}}{\partial s^{2}}=0 \tag{1.2}\\
& \frac{2(m-1)}{m-2} \frac{R}{R-\rho \cos \varphi}\left[-\frac{R_{s}{ }^{\prime} \rho \cos \varphi}{(R-\rho \cos \varphi)^{2}} \frac{\partial u_{s}}{\partial s}-\frac{R_{s}{ }^{\prime} \sin \varphi}{(R-\rho \cos \varphi)^{2}} u_{\varphi}+\frac{R}{R-\rho \cos \varphi} \frac{\partial^{2} u_{s}}{\partial s^{2}}+\right. \\
& \left.+\frac{R_{s}{ }^{\prime} \cos \varphi}{(R-\rho \cos \varphi)^{2}} u_{\rho}\right]+\frac{3 m-4}{m-2} \frac{R \sin \varphi}{(R-\rho \cos \varphi)^{2}} \frac{\partial u_{\varphi}}{\partial s}+ \\
& +\frac{m}{m-2} \frac{R}{R-\rho} \cos \varphi\left[\frac{\partial^{2} u_{\rho}}{\partial \rho \partial s}+\frac{1}{\rho} \frac{\partial^{2} u_{\varphi}}{\partial s \partial \varphi}\right]-\frac{1}{(R-\rho \cos \varphi)^{2}} u_{s}+\frac{\sin \varphi}{\rho(R-\rho \cos \varphi)} \frac{\partial u_{s}}{\partial \varphi}+ \\
& +\frac{1}{\rho^{2}} \frac{\partial^{2} u_{s}}{\partial \varphi^{2}}+\frac{R-2 \rho \cos \varphi}{\rho(R-\rho \cos \varphi)} \frac{\partial u_{s}}{\partial \rho}+\frac{\partial^{2} u_{s}}{\partial \rho^{2}}+ \\
& +\frac{1}{m-2} \frac{R}{R-\rho \cos \varphi}\left[-(3 m-4) \frac{\cos \varphi}{R-\rho \cos \varphi}+\frac{m}{\rho}\right] \frac{\partial u_{\rho}}{\partial s}=0 \tag{1.3}\\
& \frac{2(m-1)}{m-2} \frac{R}{R-\rho \cos \varphi}\left[-\frac{R_{s}{ }^{\prime} \rho \cos \varphi}{(R-\rho \cos \varphi)^{2}} \frac{\partial u_{s}}{\partial s}-\frac{R_{s^{\prime}} \sin \varphi}{(R-\rho \cos \varphi)^{2}} u_{\varphi}+\frac{R}{R-\rho \cos \varphi} \frac{\partial^{2} u_{s}}{\partial s^{2}}+\right. \\
& \left.+\frac{R_{s}{ }^{\prime} \cos \varphi}{(R-\rho \cos \varphi)^{2}} u_{\rho}\right]+\frac{3 m-4}{m-2} \frac{R \sin \varphi}{(R-\rho \cos \varphi)^{2}} \frac{\partial u_{\varphi}}{\partial s}+
\end{align*}
$$

In Formulas (1.1) to (1.3), u_{ρ}, u_{φ} and u_{s} are the components of the displacement vector, taken in the directions of the introduced coordinates, while R is the radius of curvature L at point P.

Introduce a change of variables into (1.1) to (1.3)

$$
\begin{equation*}
\rho=e^{-t} \tag{1.4}
\end{equation*}
$$

Equation (1.1) takes the form

$$
\begin{gathered}
\quad \frac{2(m-1)}{m-2}\left[-\frac{R\left(R-2 e^{-t} \cos \varphi\right)}{\left(R-e^{-t} \cos \varphi\right)^{2}} u_{\rho}-\frac{R-2 e^{-t} \cos \varphi}{R-e^{-t} \cos \varphi} \frac{\partial u_{\rho}}{\partial t}+\frac{\partial^{2} u_{\rho}}{\partial t^{2}}+\frac{\partial u_{\rho}}{\partial t}\right]+ \\
+\frac{3 m-4}{m-2}\left[\frac{R \cos \varphi e^{-2 t}}{\left(R-e^{-t} \cos \varphi\right)^{2}} \frac{\partial u_{s}}{\partial s}-\frac{\partial u_{\varphi}}{\partial \varphi}\right]+\left[\frac{3 m-4}{m-2} e^{-t} \cos \varphi-R\right] \frac{\sin \varphi e^{-t}}{\left(R-e^{-t} \cos \varphi\right)^{2}} u_{\varphi}- \\
-\frac{m}{m-2}\left[\frac{R e^{-t}}{R-e^{-t} \cos \varphi} \frac{\partial^{2} u_{s}}{\partial t \partial s}+\frac{\partial^{2} u_{\varphi}}{d t \partial \varphi}+\frac{e^{-t} \sin \varphi}{R-e^{-t} \cos \varphi} \frac{\partial u_{\varphi}}{\partial t}\right]-\frac{R R_{s}^{\prime} e^{-2 t}}{\left(R-e^{-t} \cos \varphi\right)^{3}} u_{s}- \\
-\frac{R e^{-3 t} \cos \varphi}{\left(R-e^{-t} \cos \varphi\right)^{3}} \frac{\partial u_{\epsilon}}{\partial s}+\frac{R^{2} e^{-2 t}}{\left(R-e^{-t} \cos \varphi\right)^{2}} \frac{\partial^{2} u_{\rho}}{\partial s^{2}}+\frac{e^{-t} \sin \varphi}{R-e^{-t} \cos \varphi} \frac{\partial u_{\rho}}{\partial \varphi}+\frac{\partial^{2} u_{\rho}}{\partial \varphi^{2}}=0
\end{gathered}
$$

Noting that the neighborhood of A is sufficiently small so that terms containing the factor e^{-t} may be neglected in comparison with the rest, we obtain

$$
\begin{equation*}
\frac{2(m-1)}{m-2}\left[-u_{\rho}+\frac{\partial^{2} u_{\rho}}{\partial t^{2}}\right]-\frac{3 m-4}{m-2} \frac{\partial u_{\varphi}}{\partial \varphi}-\frac{m}{m-2} \frac{\partial^{2} u_{\varphi}}{\partial t \partial \varphi}+\frac{\partial^{2} u_{\rho}}{\partial \varphi^{2}}=0 \tag{1.5}
\end{equation*}
$$

Similar transformations of (1,2) and (1,3) yield

$$
\begin{gather*}
\frac{2(m-1)}{m-2} \frac{\partial^{2} u_{\varphi}}{\partial \varphi^{2}}-\frac{m}{m-2} \frac{\partial^{2} u_{\rho}}{\partial t \partial \varphi}-u_{\varphi}+\frac{3 m-4}{m-2} \frac{\partial u_{\rho}}{\partial \varphi}+\frac{\partial^{2} u_{\varphi}}{\partial t^{2}}=0 \tag{1.6}\\
\frac{\partial^{2} u_{s}}{\partial \varphi^{2}}+\frac{\partial^{2} u_{s}}{\partial t^{2}}=0 \tag{1.7}
\end{gather*}
$$

Setting in (1.5) to (1.7) $m=m_{i}, u_{\rho}=u_{i \rho}, u_{\varphi}=u_{i \varphi}$ and $u_{8}=u_{i s}$, we obtain, for $t=1$, 2 , a system of equilibrium equations for the first and second body, respectively.

We seek solutions of the form

$$
\begin{equation*}
u_{i \rho}=e^{-t k} \quad A_{i}(\varphi), \quad u_{i \varphi}=e^{-t k} \quad B_{i}(\varphi), \quad u_{i s}=e^{-t k_{1}} C_{i}(\varphi)(i=1,2) \tag{1.8}
\end{equation*}
$$

The displacements are assumed to be bounded in the neighborhood of the edge, so that $K \geq 0$ and $k_{1} \geq 0$. Substituting (1.8) into equations of equilibrium, we obtain a system of differential equations for the determination of the functions $A_{1}(\varphi), B_{1}(\varphi)$ and $C_{1}(\varphi)$

$$
\begin{gather*}
A_{i}^{\prime \prime}+\frac{m_{i} k-3 m_{i}+4}{m_{i}-2} B_{i}{ }^{\prime}+\frac{2\left(m_{i}-1\right)}{m_{i}-2}\left(k^{2}-1\right) A_{i}=0 \tag{1.9}\\
\frac{2\left(m_{i}-1\right)}{m_{i}-2} B_{i}^{\prime \prime}+\frac{m_{i} k+3 m_{i}-4}{m_{i}-2} A_{i}{ }^{\prime}+\left(k^{2}-1\right) B_{i}=0 \quad(i=1,2) \tag{1.10}\\
C_{i}{ }^{\prime \prime}+k_{1}^{2} C_{i}=0 \tag{1.11}
\end{gather*}
$$

The general solutions of (1.9), (1.10) and (1.11) are easily found. For $k \neq 0$ and $k_{1} \neq 0$, they are given by the following relations :

$$
\begin{gather*}
A_{i}(\varphi)=C_{i 1}\left(m_{i} k-3 m_{i}+4\right) \cos (k-1) \varphi+ \\
+C_{i 2}\left(m_{i} k-3 m_{i}+4\right) \sin (k-1) \varphi+C_{i 3} \cos (k+1) \varphi+C_{i 4} \sin (k+1) \varphi \tag{1.12}\\
B_{i}(\varphi)=-C_{i 1}\left(m_{i} k+3 m_{i}-4\right) \sin (k-1) \varphi+ \\
+C_{i 2}\left(m_{i} k+3 m_{i}-4\right) \cos (k-1) \varphi-C_{i 3} \sin (k+1) \varphi+C_{i 4} \cos (k+1) \varphi \tag{1.13}\\
C_{i}(\varphi)=D_{i 1} \sin k_{1} \varphi+D_{i 2} \cos k_{1} \varphi \quad(i=1,2) \tag{1.14}
\end{gather*}
$$

For $k=0$, the general solutions of $(1,9)$ and $(1,10)$ are represented in the form

$$
\begin{equation*}
A_{i}(\varphi)=\left(E_{i 1} \varphi+E_{i 2}\right) \cos \varphi+\left(E_{i 3} \varphi+E_{i 4}\right) \sin \varphi \tag{1.15}
\end{equation*}
$$

$B_{i}(\varphi)=\left(E_{i 3} \varphi+E_{i 4}-\frac{m_{i}}{3 m_{i}-4} E_{i 1}\right) \cos \varphi-\left(E_{i 1} \varphi+E_{i 2}+\frac{m_{i}}{3 m_{i}-4} E_{i 3}\right) \sin \varphi \quad(i=1,2)$

For $\kappa_{1}=0$, the general solution of (1.11) is given by

$$
\begin{equation*}
C_{i}(\varphi)=F_{i 1} \varphi+F_{i 2} \quad(i=1,2) \tag{1.17}
\end{equation*}
$$

The constants $C_{1 \mathrm{~g}}, D_{1 \mathrm{\jmath}}, E_{1 \mathrm{~g}}$ and $F_{1 \mathrm{j}}$ are determined from the boundary conditions, which will now be formulated.
2. Let the surfaces Γ and Γ_{2} in the neighborhood of point A under consideration be free of stresses. The governing equations on the contact surface Γ_{I} are the equations for the components of a stress-strain state for two media. Since Γ, Γ_{1} and Γ_{2} are coordinate surfaces corresponding to $\varphi=0, \varphi=\alpha_{1}$ and $\varphi=\alpha_{2}$, respectively, the boundary conditions are $\sigma_{1 \varphi}=\boldsymbol{\tau}_{1 \rho \varphi}=\boldsymbol{\tau}_{1 s \varphi}=0 \quad(\varphi=0), \quad \sigma_{2 \varphi}=\tau_{2 \rho \varphi}=\tau_{2 s \varphi}=0 \quad\left(\varphi=\alpha_{2}\right)$
$\sigma_{1 \varphi}=\sigma_{2 \varphi}, \quad \tau_{1 \rho \varphi}=\tau_{2 \rho \varphi}, \quad \tau_{1 s \varphi}=\tau_{2 s \varphi}, \quad u_{1 \rho}=u_{2 \rho}, \quad u_{1 \varphi}=u_{2 \varphi}, \quad u_{1 s}=u_{2 s} \quad\left(\varphi=\alpha_{1}\right)$
The indicated stresses, in terms of displacements in the above coordinate system, are given by

$$
\begin{align*}
& \begin{aligned}
\sigma_{i \varphi}= & \frac{2 G_{i}}{m_{i}-2}\left[\frac{m_{i}-1}{\rho} \frac{\partial u_{i \varphi}}{\partial \varphi}+\left(m_{i}-\frac{R}{R-\rho \cos \varphi}\right) \frac{u_{i \rho}}{\rho}+\frac{\partial u_{i \rho}}{\partial \rho}+\right. \\
& \left.\quad+\frac{R}{R-\rho \cos \varphi} \frac{\partial u_{i s}}{\partial s}+\frac{\sin \varphi}{R-\rho \cos \varphi} u_{i \varphi}\right]
\end{aligned} \tag{2.2}\\
& \boldsymbol{\tau}_{i \rho \varphi}=G_{i}\left[\frac{1}{\rho} \frac{\partial u_{i \rho}}{\partial \varphi}+\frac{\partial u_{i \varphi}}{\partial \rho}-\frac{u_{i \varphi}}{\rho}\right] \\
& \boldsymbol{\tau}_{i s \varphi}=G_{i}\left[\frac{R}{R-\rho \cos \varphi} \frac{\partial u_{i \varphi}}{\partial s}+\frac{1}{\rho} \frac{\partial u_{i s}}{\partial \varphi}-\frac{\sin \varphi}{R-\rho \cos \varphi} u_{i \theta}\right] \quad(i=1,2) \tag{2.3}
\end{align*}
$$

Introducing the changes of variable from (1.4) into (2.2) to (2.4) and taking into account the smallness of the neighborhood, we obtain the following relations:

$$
\begin{align*}
\sigma_{i \varphi} & =\frac{2 G_{i}}{m_{i}-2} e^{t}\left[\left(m_{i}-1\right) \frac{\partial u_{i \varphi}}{\partial \varphi}+\left(m_{i}-1\right) u_{i \rho}-\frac{\partial u_{i \rho}}{\partial t}\right] \tag{2.5}\\
\tau_{i \rho \varphi} & =G_{i} e^{t}\left[\frac{\partial u_{i \rho}}{\partial \varphi}-\frac{\partial u_{i \varphi}}{\partial t}-u_{i \varphi}\right], \quad \tau_{i s \varphi}=G_{i} e^{t} \frac{\partial u_{i s}}{\partial \varphi} \quad(i=1,2) \tag{2.6}
\end{align*}
$$

Upon satisfying boundary conditions (2.1), we obtain a system of homogeneous equations in $C_{1 \mathrm{j}}$ and $D_{1 ;} \quad C_{11} m_{1}(k+1)+C_{13}=0, \quad C_{12} m_{1}(k-1)+C_{14}=0$

$$
\begin{align*}
C_{21} m_{2}(k+1) \cos (k-1) \alpha_{2}+C_{22} m_{2}(k+1) \sin & (k-1) \alpha_{2}+C_{23} \cos (k+1) \alpha_{2}+ \tag{2.7}\\
& +C_{24} \sin (k+1) \alpha_{2}=0
\end{align*}
$$

$-C_{21} m_{2}(k-1) \sin (k-1) \alpha_{2}+C_{22} m_{2}(k-1) \cos (k-1) \alpha_{2}-C_{23} \sin (k+1) \alpha_{2}+$ $+C_{24} \cos (k+1) a_{2}=0$
$C_{11}\left(m_{1} k-3 m_{1}+4\right) \cos (k-1) \alpha_{1}+C_{12}\left(m_{1} k-3 m_{1}+4\right) \sin (k-1) \alpha_{1} 4$
$+C_{13} \cos (k+1) \alpha_{1}+C_{14} \sin (k+1) \alpha_{1}-C_{21}\left(m_{2} k-3 m_{2}+4\right) \cos (k-1) \alpha_{1}-$
$-C_{22}\left(m_{2} k-3 m_{2}+4\right) \sin (k-1) \alpha_{1}-C_{23} \cos (k+1) \alpha_{1}-C_{24} \sin (k+1) \alpha_{1}=0$
$-C_{11}\left(m_{1} k+3 m_{1}-4\right) \sin (k-1) \alpha_{1}+C_{12}\left(m_{1} k+3 m_{1}-4\right) \cos (k-1) \alpha_{1}-$
$-C_{13} \sin (k+1) \alpha_{1}+C_{14} \cos (k+1) \alpha_{1}+C_{21}\left(m_{2} k+3 m_{2} \quad 4\right) \sin (k-1) \alpha_{1}-$
$-C_{22}\left(m_{2} k+3 m_{2}-4\right) \cos (k-1) \alpha_{1}+C_{23} \sin (k+1) \alpha_{1}-C_{24} \cos (k+1) \alpha_{1}=0$
$G_{1}\left[C_{11} m_{1}(k+1) \cos (k-1) \alpha_{1}+C_{12} m_{1}(k+1) \sin (k-1) \alpha_{1}+C_{13} \cos (k+1) \alpha_{1}+\right.$ $\left.+C_{14} \sin (k+1) \alpha_{1}\right]-G_{2}\left[C_{21} m_{2}(k+1) \cos (k-1) \alpha_{1}+C_{22} n_{2}(k+1) \sin (k-1) \alpha_{1}+\right.$ $\left.+C_{23} \cos (k+1) \alpha_{1}+C_{24} \sin (k+1) \alpha_{1}\right]-0$

$$
\begin{gather*}
G_{1}\left[-C_{11} m_{1}(k-1) \sin (k-1) \alpha_{1}+C_{12} m_{1}(k-1) \cos (k-1) \alpha_{1}-C_{12} \sin (k+1) \alpha_{1}+\right. \\
+C_{14} \cos (k+1) \alpha_{1}\left|-C_{22}\right|-C_{21} m_{2}(k-1) \sin (k-1) \alpha_{1}+ \\
\left.+C_{22} m_{2}(k-1) \cos (k-1) \alpha_{1}-C_{23} \sin (k+1) \alpha_{1}+C_{24} \cos (k+1) \alpha_{1}\right]=0 \\
D_{11}-0, \quad D_{21} \cos k_{1} \alpha_{2}-I_{22} \sin k_{1} \alpha_{2}=0 \tag{2.9}\\
D_{11} \sin k_{1} \alpha_{1}+D_{12} \cos k_{1} \alpha_{1}-D_{21} \sin k_{1} \alpha_{1}-D_{22} \cos k_{1} \alpha_{1}=0 \\
G_{1}\left(D_{11} \cos k_{1} \alpha_{1}-D_{12} \sin k_{1} \alpha_{1}\right)-G_{2}\left(D_{21} \cos k_{1} \alpha_{1}-D_{22} \sin k_{1} \alpha_{1}\right)=0
\end{gather*}
$$

Setting the determinant of the system $(2,8)$ and (2.9) equal to zero, we obtain, after some manipulation, the characteristic equations in k_{2} and k_{1}

$$
\begin{align*}
& G_{1}^{2}\left(\frac{m_{2}-1}{m_{2}}\right)^{2}\left[\sin ^{2} k \alpha_{1}-k^{2} \sin ^{2} \alpha_{1}\right]+G_{2}^{2}\left(\frac{m_{1}-1}{m_{1}}\right)^{2}\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-k^{2} \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)\right]+ \\
& +\left(\frac{G_{2}-G_{1}}{2}\right)^{2}\left[\sin ^{2} k \alpha_{1}-k^{2} \sin ^{2} \alpha_{1}\right]\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-k^{2} \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)\right]+ \\
& +2 G_{1} G_{2} \frac{m_{1}-1}{m_{1}} \frac{m_{2}-1}{m_{2}}\left[\sin k\left(\alpha_{2}-\alpha_{1}\right) \sin k \alpha_{1} \cos k \alpha_{2}-k^{2} \sin \alpha_{1} \sin \left(\alpha_{2}-\alpha_{1}\right) \cos \alpha_{2}\right]+ \\
& \quad+G_{1}\left(G_{2}-G_{1}\right) \frac{m_{2}-1}{m_{2}}\left[\sin ^{2} k \alpha_{1}-k^{2} \sin ^{2} \alpha_{1}\right] \sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)+ \tag{2.10}\\
& \quad+G_{2}\left(G_{1}-G_{2}\right) \frac{m_{1}-1}{m_{1}}\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-k^{2} \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)\right] \sin ^{2} k \alpha_{1}=0 \quad(k>0) \\
& G_{2} \cos k_{1} \alpha_{1} \sin k_{1}\left(\alpha_{2}-\alpha_{1}\right)+G_{1} \sin k_{1} \alpha_{1} \cos k_{1}\left(\alpha_{2}-\alpha_{1}\right)=0 \quad\left(k_{1}>0\right) \tag{2.11}
\end{align*}
$$

Now consider the case of $K=0$. Upon satisfying the boundary conditions (2, 1), we obtain a system of equations in $E_{1 j}$ from which it follows that $E_{11}=E_{13}=0, E_{22}=E_{12}$ $E_{24}=E_{14}$, with F_{12} and E_{14} being independent arbitrary constants. The components of the displacement vector are given by

$$
\begin{equation*}
u_{\text {sj }}=u_{1 \rho}=E_{12} \cos \varphi+E_{14} \sin \varphi, \quad u_{2 ;}=u_{1 p}=E_{14} \cos \varphi-E_{12} \sin \varphi \tag{2.12}
\end{equation*}
$$

It is easily seen that the expressions in (2, 12) represent rigid body displacements.
Similarly, for $k_{1}=0$, we have $F_{11}=0, F_{22}=F_{12}$, and the solution $u_{1 s}=u_{2 s}=F_{12}$ also represents a rigid body displacement .

Thus, the cases $K=0$ and $\lambda_{1}=0$ are of no interest in the problem at hand. We will now investigate the solutions corresponding to positive values of κ and κ_{1}, defined by the realtions (2.10) and (2.11).

In the most prevalent case of contact between two bodies, for $\alpha_{1}=\frac{1}{2} \pi$ and $\alpha_{2}=\frac{3}{2} \pi$, investigation of the singularity of the solution in the neighborhood of edge $A B$ (Fig. 2) yields the characteristic equations in μ_{1} and κ_{1}.

$$
\begin{gather*}
G_{1}^{2}\left(\frac{m_{2}-1}{m_{2}}\right)^{2}\left(\sin ^{2} \frac{k \pi}{2}-l^{2}\right)-G_{-}^{2}\left(\frac{m_{1}-1}{m_{1}}\right)^{2} \sin ^{2} h \pi+ \\
+\left(\frac{G_{2}-G_{1}}{2}\right)^{2}\left(\sin ^{2} \frac{k \pi}{2} h^{2}\right) \sin ^{2} h_{\pi}+3 G_{1} G_{2} \frac{m_{1}-1}{m_{1}} \frac{m_{2}-1}{m_{2}} \times \\
\times \sin k \pi \sin \frac{k \pi}{2} \cos \frac{3 k \pi}{2}+G_{1}\left(G_{2}-G_{1}\right) \frac{m_{2}-1}{m_{2}}\left(\sin ^{2} \frac{k \pi}{2}-h^{2}\right) \sin ^{2} k \pi+ \\
+G_{2}\left(G_{1}-G_{2}\right) \frac{m_{1}-1}{m_{1}} \sin ^{2} k \pi \sin ^{2} \frac{k \pi}{2}=0 \tag{2.13}
\end{gather*}
$$

$$
\begin{equation*}
G_{2} \cos \frac{k_{1} \pi}{2} \sin h_{1} \pi+G_{1} \sin \frac{h_{1} \pi}{2} \cos k_{2} \pi=0 \tag{2.14}
\end{equation*}
$$

Let us now examine the case of a homogeneous plate the side surface of which makes an angle α with the plane of the face. This case may be obtained by setting $G_{2}=G_{1}=G$, $m_{2}=m_{1}=m$ and $\alpha_{2}=\alpha$ in the relations previously derived. The characteristic equations take the form

Fig. 2

$$
\begin{gather*}
\sin ^{2} k \alpha-k^{2} \sin ^{2} \alpha=0 \quad(k>0) \tag{2.15}\\
\sin k_{1} \alpha=0 \quad\left(k_{1}>0\right) \tag{2.16}
\end{gather*}
$$

Whereupon, Equations (2.8) and (2.9) yield

$$
C_{1 j}=C_{2 j}, \quad D_{1 j}=D_{2 j}
$$

Setting

$$
C_{1 j}=C_{2 j}=C_{j}, \quad D_{1 j}=D_{2 j}=D_{j}
$$

we obtain a system of equations for the constants C_{1} and D_{j}

$$
C_{3}=-C_{1} m(k+1), \quad C_{4}=-C_{2} m(k-1) \quad(2.17)
$$

$C_{1}(k+1) \sin k \alpha \sin \alpha+C_{2}(\sin k \alpha \cos \alpha-k \sin \alpha \cos k \alpha)=0$ $C_{1}(k \sin \alpha \cos k \alpha+\sin k \alpha \cos \alpha)+C_{2}(k-1) \sin k \alpha \sin \alpha=0$

$$
\begin{equation*}
D_{1}=0, \quad D_{2} \sin k_{1} \alpha=0 \tag{2.18}
\end{equation*}
$$

It is easily found by taking note of (2.15) that, for all $\alpha \neq \pi$ in the interval ($0,2 \pi$), the rank of the matrix of system (2.17) is three, while for $\alpha=\pi$ and $\alpha=2 \pi$ the matrix is of rank 2. Hence, the case $\alpha=\pi$ and $\alpha=2 \pi$ will be examined separately, For $0<\alpha<\pi$ and $\pi<\alpha<2 \pi$, we have
$C_{3}(k-1)=-C_{1}(k \cot k \alpha+\cot \alpha), C_{3}=-C_{1} m(k+1), C_{4}=C_{2} m(k \cot k \alpha+\cot \alpha)$
Then we obtain for the components of the displacement vector, when $0<\alpha<\pi$ and $\pi<\alpha<2 \pi$

$$
\begin{gather*}
u_{\rho}=C \rho^{\mathrm{k}}[(m k-3 m+4)(k-1) \cos (k-1) \varphi-(m k-3 m+4)(k \cot k \alpha+ \\
+\cos \alpha) \sin (k-1) \varphi-m\left(k^{2}-1\right) \cos (k+1) \varphi+ \\
+m(k-1)(k \cos k \alpha+\cot \alpha) \sin (k+1) \varphi] \tag{2.20}\\
u_{\varphi}=C \rho^{k}[-(m k+3 m-4)(k-1) \sin (k-1) \varphi-(m k+3 m-4)(k \cot k \alpha+ \\
+\cos \alpha) \cos (k-1) \varphi+m\left(k^{2}-1\right) \sin (k+1) \varphi+ \\
+m(k-1)(k \cot k \alpha+\cos \alpha) \cos (k+1) \varphi] \tag{2.21}\\
u_{8}=D_{\mathrm{s}} \rho^{k_{1}} \cos k_{1} \varphi \tag{2.22}
\end{gather*}
$$

Here κ and K_{1} are determined from relations (2.15) and (2.16), respectively. If $\alpha=\pi$, the characteristic equations for κ and κ_{1} are

$$
\begin{equation*}
\sin k \pi=0, \quad \sin k_{1} \pi=0 \tag{2.23}
\end{equation*}
$$

i. e. κ and \hbar_{1} are positive integers, Clearly, in that case the stresses in the neighborhood of the edge are finite, as expected.

For $\alpha=2 \pi$, the characteristic equation for κ and k_{1} are

$$
\begin{equation*}
\sin 2 k \pi=0, \quad \sin 2 k_{1} \pi=0 \tag{2.24}
\end{equation*}
$$

Evidently, in this case, as the plate edge is approached, the stresses increase without bounds, except for $k=\frac{1}{2}$ or $k_{1}=\frac{1}{2}$. The displacement vector components are here given by

$$
\begin{aligned}
u_{\rho}=1 / 2 & \sqrt{\rho}\left\{-C_{1}[(5 m-8) \cos 1 / 2 \varphi+3 m \cos 3 / 2 \xi \varphi]+\right. \\
& \left.+C_{2}[(5 m-8) \sin 1 / 2 \varphi+m \sin 2 / 2 \varphi]\right\}
\end{aligned}
$$

$$
\begin{gather*}
u_{\varphi}=1 / 2 \sqrt{\rho}\left\{C_{1}[(7 m-8) \sin 1 / 2 \varphi+3 m \sin 3 / 2 \varphi]+\right. \\
\left.+C_{2}\left[(7 m-8) \cos 1 / 2 \varphi+m \cos ^{3} / 2 \varphi\right]\right\} \\
u_{s}=D_{2} \sqrt{\rho} \cos 1 / 2 \varphi \tag{2.25}
\end{gather*}
$$

Thus, when the surfaces Γ and Γ_{2} are unloaded in the neighborhood of the edge, the singularities are of the form ρ^{k-1} or $\rho^{k_{1}-1}$, where k^{2} and \mathcal{F}_{1} are obtained from (2.10) and (2.11).
3. Now let the surfaces Γ and Γ_{2} be rigidly clamped in the neighborhood under consideration, i_{0} e.

$$
\begin{gathered}
u_{1 \rho}=u_{1 \varphi}=u_{1} s=0 \quad(\varphi=0), \quad u_{2 \rho}=u_{2 \varphi}=u_{2 s}=0 \quad\left(\varphi=\alpha_{2}\right) \\
\sigma_{1 \varphi}=\sigma_{2 \varphi} \quad \tau_{1 \rho \varphi}=\tau_{2 \rho \varphi}, \quad \tau_{1} s \varphi=\tau_{2}, \quad u_{1 \rho}=u_{2 \rho}, \quad u_{1 \varphi}=u_{2 \varphi}, \quad u_{1 s}=u_{2} s \quad(\varphi=1
\end{gathered}
$$

Satisfying these conditions for $\kappa>0$ and $\kappa_{1}>0$ in a manner similar to the above, we obtain a system of homogeneous equations in $C_{1 \mathrm{j}}$ and $D_{1 \mathrm{~g}}$. Setting the determinants of these systems equal to zero, we obtain the characteristic equations for k and k_{1}

$$
\begin{gather*}
G_{2}^{2}\left(\frac{m_{2}-1}{3 m_{2}-4}\right)^{2}\left[\sin ^{2} k \alpha_{1}-\left(\frac{m_{1} k}{3 m_{1}-4}\right)^{2} \sin ^{2} \alpha_{1}\right]+ \\
+G_{1}^{2}\left(\frac{m_{1}-1}{3 m_{1}-4}\right)^{2}\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-\left(\frac{m_{2} k}{3 m_{2}-4}\right)^{2} \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)\right]+ \\
+\left(\frac{G_{2}-G_{1}}{2}\right)^{2}\left[\sin ^{2} k \alpha_{1}-\left(\frac{m_{1} k}{3 m_{1}-4}\right)^{2} \sin ^{2} \alpha_{1}\right]\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-\left(\frac{m_{2} k}{3 m_{2}-4}\right)^{2} \times\right. \\
\left.\times \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)\right]-G_{2}\left(G_{2}-G_{1}\right) \frac{m_{2}-1}{3 m_{2}-4}\left[\sin ^{2} k \alpha_{1}-\left(\frac{m_{1} k}{3 m_{1}-4}\right)^{2} \sin ^{2} \alpha_{1}\right] \sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)- \\
-G_{1}\left(G_{1}-G_{2}\right) \frac{m_{1}-1}{3 m_{1}-4}\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-\left(\frac{m_{2} k}{3 m_{2}-4}\right)^{2} \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)\right] \sin ^{2} k \alpha_{1}+(3 \tag{3.2}\\
+2 G_{1} G_{2} \frac{m_{1}-1}{3 m_{1}-4} \frac{m_{2}-1}{3 m_{2}-4}\left[\sin k \alpha_{1} \sin k\left(\alpha_{2}-\alpha_{1}\right) \cos k \alpha_{2}-\right. \\
\left.-\frac{m_{1}}{3 m_{1}-4} \frac{m_{2}}{3 m_{2}-4} k^{2} \sin \alpha_{1} \sin \left(\alpha_{2}-\alpha_{1}\right) \cos \alpha_{2}\right]=0 \quad(k>0) \tag{3.3}
\end{gather*}
$$

$G_{1} \cos k_{1} \alpha_{1} \sin k_{1}\left(\alpha_{2}-\alpha_{1}\right)+G_{2} \sin k_{1} \alpha_{1} \cos k_{1}\left(\alpha_{2}-\alpha_{1}\right)=0 \quad\left(k_{1}>0\right)$
If either of the quantities κ or \hbar_{I} is taken equal to zero, then the corresponding displacements become zero, as expected. Hence, hereinafter we will assume κ and κ_{1} to be positive.

For $\alpha_{1}=1 / 2 \pi, \alpha_{2}=3 / 2 \pi$ (Fig. 2), the characteristic equations are

$$
\begin{gather*}
G_{2}^{2}\left(\frac{m_{2}-1}{3 m_{2}-4}\right)^{2}\left[\sin ^{2} \frac{k \pi}{2}-\left(\frac{m_{1} k}{3 m_{1}-4}\right)^{2}\right]+G_{1}^{2}\left(\frac{m_{1}-1}{3 m_{1}-4}\right)^{2} \sin ^{2} k \pi+ \\
+\left(\frac{G_{2}-G_{1}}{2}\right)^{2}\left[\sin ^{2} \frac{k \pi}{2}-\left(\frac{m_{1} k}{3 m_{1}-4}\right)^{2}\right] \sin ^{2} k \pi-G_{2}\left(G_{2}-G_{1}\right) \frac{m_{2}-1}{3 m_{2}-4}\left[\sin ^{2} \frac{k \pi}{2}-\right. \\
\left.-\left(\frac{m_{1} k}{3 m_{1}-4}\right)^{2}\right] \sin ^{2} k \pi-G_{1}\left(G_{1}-G_{2}\right) \frac{m_{1}-1}{3 m_{1}-4} \sin ^{2} k \pi \sin ^{2} \frac{k \pi}{2}+ \\
+2 G_{1} G_{2} \frac{m_{1}-1}{3 m_{1}-4} \frac{m_{2}-1}{3 m_{2}-4} \sin \frac{k \pi}{2} \sin k \pi \cos \frac{3 k \pi}{2}=0 \quad(k>0) \tag{3.4}\\
G_{1} \cos \frac{k_{1} \pi}{2} \sin k_{1} \pi+G_{2} \sin \frac{k_{1} \pi}{2} \cos k_{1} \pi=0 \quad\left(k_{1}>0\right) \tag{3.5}
\end{gather*}
$$

If the plate material is homogeneous, we have the following equations in κ_{1} and $\kappa_{1}:$

$$
\begin{gather*}
\sin ^{2} k \alpha-\left(\frac{m k}{3 m-4}\right)^{2} \sin ^{2} \alpha=0 \quad(k>1) \tag{3,i}\\
\sin k_{2} \alpha=0 \quad\left(k_{1}>0\right) \tag{3.7}
\end{gather*}
$$

The equations for C_{j} and D_{j}, for $0<\alpha<\pi$ and $\Pi<\alpha<2 \pi$, become

$$
\begin{gather*}
C_{3}=-(m k-3 m+4) C_{1}, \quad C_{4}=-(m k+3 m-4) C_{2} \tag{3.8}\\
C_{1}(m k-3 m+4)-C_{2}[m k \cot k \alpha+(3 m-4) \cot \alpha]=0 \tag{3.9}\\
C_{1}(m k \text { sot } k \alpha-(3 m-4) \cot \alpha]+C_{2}(m k+3 m-4)=0 \tag{3.10}\\
D_{2}=0, \quad D_{1} \sin k_{1} \alpha=0 \tag{3.11}
\end{gather*}
$$

It is not difficult to show that if

$$
\begin{equation*}
\alpha=\frac{m}{m-2} x^{*} \quad(n=1,2,3) \tag{3.12}
\end{equation*}
$$

then both coefficients in Equation (3.10) vanish for $k=-(3 m-4) / m$, which turns out to be a root of Equation (3.6) in this case. The coefficients in (3.9) are nonzero for $k=-(3 m-4) / m$, but if

$$
\begin{equation*}
a-\frac{m}{2(m-1)} \frac{n \pi}{2} \quad(n=1,2,3, \ldots, 7) \tag{3.13}
\end{equation*}
$$

both become zero for $\kappa=(3 m-4) / m$.
Hence, when α satisfies condition (3.12), the following formulas must be used for determining u_{ρ} and u_{φ}, when $K=-(3 m-4) / m$:

$$
\begin{gather*}
u_{\rho}=-C_{\rho}^{-\frac{3 m-4}{m}}\left[\left(\cot \alpha+\cot \frac{3 m-4}{m} \alpha\right) \cos \frac{4(m-1)}{m} \varphi+2 \sin \frac{4(m-1)}{m} \varphi-\right. \\
 \tag{3.14}\\
\left.-\left(\cot \alpha+\cot \frac{3 m-4}{m} \alpha\right) \cos \frac{2(m-2)}{m} \varphi\right] \\
u_{\varphi}= \\
C_{\rho}{ }^{-\frac{3 m-4}{m}}\left(\cot \alpha+\cot \frac{3 m-4}{m} \alpha\right) \sin \frac{2(m-2)}{m} \varphi
\end{gather*}
$$

For all values of λ different from $-(3 m-4) / m$ but satisfying (3.12) as well as for arbitrary \hbar not satisfying (3.12), the displacements u_{ρ} and u_{φ} are given by

$$
\begin{gather*}
u_{\rho}=C \rho^{k}\{(m k-3 m+4)(m k+3 m-4) \cos (k-1) \varphi-(m k-3 m+4)[m k \cot k \alpha- \\
\quad-(3 m-4) \cot \alpha] \sin (k-1) \varphi-(m k-3 m+4)(m k+3 m-4) \cos (k+1) \varphi+ \\
+(m k+3 m-4)[m k \cot k \alpha-(3 m-4) \cot \alpha] \sin (k+1) \varphi\} \tag{3.15}\\
u_{\varphi}=C \rho^{k}\left\{-(m k+3 m-4)^{2} \sin (k-1) \varphi-(m k+3 m-4)[m k \cot k \alpha-\right. \\
-(3 m-4) \cot \alpha] \cos (k-1) \varphi+(m k-3 m+4)(m k+3 m-4) \sin (k+1) \varphi+ \\
+(m k+3 m-4)[m k \cot k \alpha-(3 m-4) \cot \alpha] \cos (k+1) \varphi\}
\end{gather*}
$$

The displacement u_{s} for arbitrary $0<\alpha<\pi$ and $\Pi<\alpha<2 \pi$ is given by

$$
\begin{equation*}
u_{s}=D_{1} \rho^{k_{1}} \sin k_{1} \varphi \tag{3.16}
\end{equation*}
$$

If $\alpha=\pi$, the stresses in the neighborhood of the edge are finite for this problem also, as one might expect.

For $\alpha=2 \pi$, the characteristic equations for κ and ξ_{1} are

$$
\begin{equation*}
\sin 2 k \pi=0 \quad(k>0), \quad \sin 2 k_{1} \pi=0 \quad\left(k_{1}>0\right) \tag{3.17}
\end{equation*}
$$

As in the preceding case, the associated stresses increase without bounds as the edge of the plate is approached, except for $\kappa=\frac{1}{2}$ or $\kappa_{1}=\frac{1}{2}$. The expressions for the displacements in this case are

$$
\begin{aligned}
& u_{0}=1 / 2 \sqrt{\rho}\left(-C_{1}(5 m-8)(\cos 1 / 2 \varphi-\cos 3 / 2 \varphi)+C_{2}[(5 m-8) \sin 1 / 2 \varphi-\right. \\
& \left.-(7 m-8) \sin ^{3 / 2} \varphi\right] \\
& u_{\varphi}=1 / 2 \quad \sqrt{\rho}\left\{C_{1}|(7 m-8) \sin 1 / 2 \varphi-(5 m-8) \sin 3 / 2 \varphi|+\right. \\
& \left.-C_{2}(7 m-8)\left(\cos ^{1 / 2} \varphi-\cos 3 / 2 \varphi\right)\right\}, u_{s}=D_{2} \sqrt{\rho} \sin _{1 / 2} \varphi
\end{aligned}
$$

Thus, in the case of rigidly clamped surfaces Γ and Γ_{2}, the stresses in the neighborhood of the edge have singularities of the form ρ^{k-1} and $\rho^{k_{1}-1}$, where k and k_{2} are given by relations (3.2) and (3.3), respectively .
4. We now consider two more sets of boundary conditions. In the first case, the surface Γ is free while the surface Γ_{2} is rigidly clamped. In the second case, the surface Γ_{2} is free while the surface Γ is clamped. Proceeding as before, we obtain, in the first case, the characteristic equations for positive κ and k_{1}

$$
\begin{align*}
& -G_{2}\left(\frac{m_{2}-1}{m_{2}}\right) \frac{23 m_{1}-4}{m_{1}}\left[\sin ^{2} h \alpha_{1}-\frac{4\left(m_{1}-1\right)^{2}-m_{1}^{2 / 2} \sin ^{2} \alpha_{1}}{m_{1}\left(3 m_{1}-1\right)}\right]- \tag{4,1}\\
& -G_{2}\left(\frac{m_{1}-1}{m_{1}}\right)^{2} \frac{3 m_{2}-4}{m_{2}}\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-\frac{4\left(m_{2}-1\right)^{2}-m_{2} k^{2} \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)}{m_{2}\left(3 m_{2}-4\right)}\right]+ \\
& +\left(G_{1}-G_{2}\right) \frac{m_{2}-1}{m_{2}} \frac{3 m m_{2}-4}{m_{2}}\left[\sin ^{2} h \alpha_{1}-k^{2} \sin ^{2} \alpha_{1}\right] \sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)+ \\
& +\left(G_{1}-G_{2}\right) \frac{m_{1}-1}{m_{1}}\left(\frac{3 m_{2}-4}{m_{2}}\right)^{2}\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-\left(\frac{m_{2} k}{3 m_{2}-4}\right)^{2} \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)\right] \sin ^{2} k \alpha_{1}+ \\
& +\frac{\left(G_{1}-G_{2}\right)^{2}}{4 G_{2}}\left(\frac{3 m_{2}-4}{m_{2}}\right)^{2}\left[\sin ^{2} k \alpha_{1}-k^{2} \sin ^{2} \alpha_{1}\right]\left[\sin ^{2} k\left(\alpha_{2}-\alpha_{1}\right)-\left(\frac{m_{2} k}{3 m_{2}-4}\right)^{2} \sin ^{2}\left(\alpha_{2}-\alpha_{1}\right)\right]- \\
& -4 G_{2}\left(\frac{m_{1}-1}{m_{1}}\right)^{2}\left(\frac{m_{2}-1}{m_{2}}\right)^{2}-2 G_{1} \frac{m_{1}-1}{m_{1}} \frac{m_{2}-1}{m_{2}}\left\{k^{2} \sin \alpha_{1} \sin \left(\alpha_{2}-\alpha_{1}\right) \cos \alpha_{2}-\right. \\
& \left.-\frac{3 m_{2}-4}{m_{2}} \sin k \alpha_{1} \sin k\left(\alpha_{2}-\alpha_{1}\right)\left[2 \frac{G_{3}}{G_{1}} \sin k \alpha_{1} \sin k\left(\alpha_{2}-\alpha_{1}\right)-\cos k\left(2 \alpha_{1}-\alpha_{2}\right)\right]\right\}=0 \\
& G_{2} \cos k_{1} \alpha_{1} \cos k_{1}\left(\alpha_{2}-\alpha_{1}\right)-G_{1} \sin k_{1} \alpha_{1} \sin k_{1}\left(\alpha_{2}-\alpha_{1}\right)=0 \tag{4.2}
\end{align*}
$$

The characteristic equations for the second case may be obtained from Equations (4, 1) and (4.2) by interchanging α_{1}, m_{1}, G_{1} with $\alpha_{2}-\alpha_{1}, m_{2}, G_{2}$, respectively. For $k=0$ or $k_{I}=0$, the corresponding displacements again vanish.

For the case of contact between two bodies as shown in Fig, 2, the characteristic equations for k and K_{1} may be obtained in a similar manner from Equations (4.1) and (4.2) by setting $\alpha_{1}=\frac{1}{2} \Pi$ and $\alpha_{2}=\frac{3}{2} \Pi$. In investigating a homogeneous plate, the equations for h_{r} and h_{1} are for both cases

$$
\begin{equation*}
\sin ^{2} h \alpha-\frac{4(m-1)^{2}-m^{2} k^{2} \sin ^{2} \alpha}{m(3 m-4)}=0, \quad \cos k_{1} \alpha=0 \tag{4.3}
\end{equation*}
$$

The components of the displacement vector for both the first and second case of a clamped surface are

$$
\begin{gather*}
u_{F}=C \rho^{h}\left[L_{k}(\alpha)(m k-3 m+4) \cos (k-1) \varphi+M_{k}(\alpha)(m k-3 m+4) \sin (k-1) \varphi-\right. \\
\left.\quad L_{k}(\alpha) m(k+1) \cos (k+1) \varphi-M_{k}(\alpha) m(k-1) \sin (k+1) \varphi\right] \\
u_{\varphi}=C_{\rho} k\left[-L_{k}(\alpha)(m k+3 m-4) \sin (k-1) \varphi+M_{k}(\alpha)(m k+3 m-4) \cos (k-1) \varphi+\right. \\
\left.+L_{k}(\alpha) m(k+1) \sin (k+1) \varphi-M_{h_{1}}(\alpha) m(k-1) \cos (k+1) \varphi\right] \\
u_{s}=D_{2} 0^{k_{1}} \cos k_{1} \varphi \tag{4.4}
\end{gather*}
$$

$$
\begin{align*}
& u_{\varphi}=C \rho^{k}\left[-P_{k}(\alpha)\left(m k_{i}+3 m-4\right) \sin \left(l_{k}-1\right) \varphi+R_{k}(\alpha)(m k+3 m-4) \cos (k-1) \varphi+\right. \\
& \left.+P_{k}(\alpha)\left(m k_{1}-3 m+4\right) \sin (k+1) \varphi-R_{k}(\alpha)(m k+3 m-4) \cos (\pi+1) \varphi\right] \\
& \text { Here } \\
& u_{\mathrm{s}}=\rho_{1} \rho^{k_{1}} \sin k_{1} \varphi \tag{4.5}\\
& L_{k}(\alpha)=(m k-2 m+2) \sin \alpha \cos k \alpha+(m-2) \cos \alpha \sin k \alpha \\
& M_{l}(\alpha)=(m k-m+2) \sin \alpha \sin k \alpha-2(m-1) \cos \alpha \cos k \alpha \tag{4.6}\\
& P_{k}(\alpha)=(m k+2 m-2) \sin \alpha \cos k \alpha+(m-2) \cos \alpha \sin k \alpha \\
& R_{k}(\alpha)=(m k-m+2) \sin \alpha \sin k \alpha+2(m-1) \cos \alpha \cos k \alpha
\end{align*}
$$

Thus, for the cases of mixed boundary conditions examined above, the stresses in the neighborhood of the edge have singularities of the form ρ^{k-1} or $\rho^{k_{1}-1}$, where κ and \hbar_{1} are obtained from equations of the form (4,1) and (4.2).

In conclusion, let us note that the characteristic equations (2.15), (3.6) and (4.3) for a homogeneous plate coincide with the equations obtained by Ufliand [7] in investigating the corresponding problems for a plane wedge. This is only natural, for clearly the method at hand divides the procedure for finding the solution to the posed three-dimensional problem into solving one separate problem for the displacement vector component u_{g} and another problem for the components u_{ρ} and u_{φ}. the latter being the same as for a plane wedge. The singularity for the torsion problem could not, of course, be developed in [7].

BIBLIOGRAPHY

1. Fufaev, V.V., K zadache Dirikhle dlia oblastei s uglami (On the Dirichlet problem for a region with corners). Dokl. Akad. Nauk SSSR, Vol. 131, No. 1,1960.
2. Fufaev, V. V., O konformnykh preobrazovaniiakh oblastei s uglami i o differentsial'nykh svoistvakh reshenii uravneniia Puassona v oblastiakh s uglami (On conformal mapping of regions with corners and the differential properties of solutions of Poisson's equation in regions with corners). Dokl. Akad. Nauk SSSR, Vol. 152. No. 4, 1963.
3. Kondrat'ev, V.A., Otsenki proizvodnykh reshenii ellipticheskikh uravnenii vblizi granitsy (Estimates of differential eqaution solutions for elliptic equations near the boundary). Dokl. Akad. Nauk SSSR, Vol.146, No. 1, 1962.
4. Kondrat'ev, V.A., Kraevye zadachi dlia ellipticheskikh uravnenii v konicheskikh oblastiakh (Boundary value problems for elliptic equations in conical regions). Dokl. Akad. Nauk SSSR, Vol. 153, No. 1, 1963.
5. Williams, M. L., Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. appl. Mech. , Vol. 19, No. 4, 1952.
6. Williams, M. L., The complex-variable approach to stress singularities - II. J. appl. Mech., Vol. 23, No. 3, 1956.
7. Ufliand, Ia.S., Integral'nye preobrazovaniia v zadachakh teorii uprugosti (Integral Transformations in Problems of Elasticity). M. - L. , Izd. Akad. Nauk SSSR, 1963.
