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In many problems in elasticity, the numerical evaluation of solutions requires that the 
behavior of the components in the stress-strain state be known in the neighborhood of 

singular points or lines on the surface of the body under consideration. This permits 
the approximation of the solution in the most convenient manner and the construction 
of an approximate process for its determination. The papers of Fufaev [l and 21, and 
Kondrat’ev [3 and 41 are devoted to the solution of the Laplace, Poisson and elliptic 

equations in the regions having nonsmooth boundaries. Williams [5 and 63 and Ufliarid 

[‘I] have established the character of stress singularities at the corner of a plane wedge 
for various boundary conditions on its edges. The aim of the present paper is to obtain 
the singularities of the state of stress in a nonhomogeneous plate in the neighborhood of 
edge points, i, e. points of intersection of the side surface with the face of a plate. The 

method used permits the determination of the character of the singularities without 
directly solving the boundary problem. 

1, For greater generality, assume that the side surface rz is at an arbitrary angle 
Ct, (0 c a2 5 2TT) to the face r. The loading conditions on these surfaces in the 

,.e-” 
neighborhood of the edge will be formulated 
below. In addition, let us assume that the 

plate is nonhomogeneous, and consists of two 
bodies which are rigidly joined along the 
cylindrical surface cl, which passes through 
the plate edge _L . The generator of this sur- 
face is inclined at an angle al (0 < al s 2n) 
to the plate surface (Fig. 1). 

Fig. 1 

Let G1 and m, be, respectively, the shear 
modulus and Poisson’s ratio for the material 

of the first body, bounded by the surfaces r 

and PI, while G, and m, are the correspond- 
ing values for the second body, bounded by the 
surfaces r, and r,. 

Consider a sufficiently small neighborhood of point A on edge L . Introduce an 
orthogonal curvilinear coordinate system P, ep, S (Fig. 1). 
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Here Mfl is a perpendicular to the surface r from some point ,l/I I\Wg inside the 

neighborhood under investigation : NP is the normal to the edge L , lying on that surface. 

The curvilinear coordinates of M are defined in the following manner: p is the distance 

from M to P ; cp is the angle between NP and PM, and S is the distance from A to P 
measured along the curve L (the arrows on the sketch indicate the positive coordinate 

directions). 

Let us write the equilibrium equations in this coordinate system 

2(m-1) _ N (il - 2r, ClIS (p) 
m - 2 U-t f,2 (II - p cos ‘1)’ p 

11- 2p cos ‘1 au, j @up + 
1’ (R - p cos t&J) dp a;,2 1 

3m -4 Rsirlcp auS 1 aau, -- -- 
m-2 (R-pcos(p)2 as -t&2 Pap +p(R--npcos~)gk + [ 3 

1 1 

+ m - 2 pa (R - p co.9 cp) 
f 
] iT 

(3))L - 4) tip=+ - (m - 2) H _ ;a,, ~ - 

-2(m-1) Pa 
I 

au 
R-pcoscp 

UT _1- [(3m - 4) (R - p cos (p) - nLp cos cp] --L 
acp 1 

+ 

+ R - 2p c0s cp -“-+!& 
RR,’ COS up au, 

P(R-pcoscp) ap 
--+ (R- p COS~)~ as 

RR,’ sin cp RZ azu 
+ (R - p cos q~)3 uS + (R - p cos cp)2 + = ’ (1.2) 

2(m-1) R 

[ 

R,‘p cos cp au, R,* sin 9, R ab ___~~____ 
m-2 R-pccoscp (R-p COS (py as (R - p CM (P)~ % + R - p cos cp as2 -2 + 

R; ens cp 

+ (R - p cos cp,z “P I + 
3m-4 R sin cp au, 

-+ m-2 (R-pcoscp)Z as 

+ +s + $.-2Jz;;)% +G+ 

+L 
R 

[ 
- (3rn - 4) R:;~os,+g~=o 

(1.3) 
m -2 R - p cos cp 

In Formulas (1.1) to (1.3), up, ulp and ug are the components of the displacement 

vector, taken in the directions of the introduced coordinates, while R is the radius of 

curvature L at point P. 

Introduce a change of variables into (1.1) to (1.3) 

p = ,A 

Equation (1.1) takes the form 

(1.4) 
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-3/n - .‘t 

1 [ sin fqe -t 
~ 

+ m - 2 ewt CCIS cp - R 
(H - e’-’ cos cp)a % - 

m Re-’ RR ‘e-9 
-- 

m - 2 R - e-’ cos q (R - cdt cos cp)a ‘%I - 

Rem3’ cos cp au, RZe-2’ @Up e-‘sinrp auP @Up 
- 

(R - e-’ COs 9)” x + (1s _ e-I ~0s (p)Z ?@- ’ R _ c-t c,js qa’p ’ -@- = ’ 

Noting that the neighborhood of A is sufficiently small so that terms containing the 
factor ewt may be neglected in comparison with the rest, we obtain 

a% 
up++ 1 3m-4 au, m _.~-_~ 

I?~ - 2 acp (1.5) 

Similar transformations of (1.2) and (1.3) yield 

2 (m - 1) a2u~ m aaup 3m-4 aup asu 
m-2 a’p2- ppLUq+-m-2 acp m-2atacp --+--c&=0 (1.6) 

ak 
8 

azu 
L=o 

ap + ata (1.7) 

Setting in (1. 5) to (1.7) rn = mt, up = uip, uq = uiq and uI = nis, we obtain, for 

‘L = 1, 2, a System of equilibrium equations for the first and second body, respectively. 
We seek solutions of the form 

lLip = eetlr Ai (cp), uip = emtk Bi (cp), uts =e-tka ci(Q) (i - 1,2) (1.8) 

The displacements are assumed to be bounded in the neighborhood of the edge, so that 
k 2 0 and It, 2 0 . Substituting (1. 8) into equations of equilibrium, we obtain a system 
of differential equations for the determination of the functions A i (9) , Bi (q) and ci ( C+I) 

(1.9) 
2 4” + mik-3mi+4 Bi’ + (mi 

- 
1) mi-2 VLi - 2 (k2 - 1) A( = 0 

2 (mi - 1) 
Bt” + 

mik+3mi--4 

mi-2 m. -2 Ai’ + (k2 - 1) Bi = 0 (i = 1, 2) (1.10) 
1 

Ci” + klVi = 0 (i.ll) 

The general solutions of (1.9),(1.10) and (1.11) are easily found. For k# 0 and kl # 0. 

they are given by the following relations : 

Ai (q) = Ci, (mik - 3mi + I&OS (k - 1) 9 + 

+ (%a (mtk - 3mi + 4) sin (k - 1) ‘p -j- Ci, cos (k _P 1) q~ + Ci, sin (k -+ 1) q~ (1.12) 

B&) = -Ci, (mik + 3m{ - 4) sin (k - 1) cp $ 

+ Ct, (mik -j- 3mi - 4) cos (k - 1) ‘P - t& sin (k + 1) cp + % ~0s (k + 1) cp (1.13) 

Ci (q) = Dil sin klcp + Di, cos k, cp (i = i,2) (1.14) 

For k = 0 , the general solutions of (1.9) and (1.10) are represented in the form 

A&P) = (EircP + &a) eoacp f (EM + &a) since (1.15) 

4 W = ( &+P + Ei,-- &k Eil) ~0s cp - (-%cp +%+ e4 Ei3) sin rp 
1 

(i = 1.2) 

(1.16) 
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For /Zl = 0, the general solution of (1.11) is given by 

Ci (T) = Fi,T -+ Fi, (i = 1,2) (i.f7) 

The constants cl J , 31 j , _&‘I J and FiJ are determined from the boundary conditions, 
which will now be formulated. 

2. Let the surfaces r and rz in the neighborhood of point A under consideration be 
free of stresses. The governing equations on the contact surface q are the equations for 
the components of a stress-strain state for two media. Since I”, G and r, are coordinate 

surfaces corresponding to Cp = 0, Cp = Ccl and cp = a2, , respectively, the boundary condi- 
tions are Q ,9 = 7tpo = rtrP = 0 (cp = O), G&# = tZPP = Qsrp = 0 (cp = a:) (2.1 

%9 = 629, T1PT’ = ‘2&Q, ‘l+Q - - z. 2SQt yp - uap, ulQ = u2W 5s = U2$ (cp = ad 

The indicated stresses, in terms of displacements in the above coordinate system, are 
given by 

2Gi 
Q&v= m. __2 

Ini - 1 duifq 

P 
aCp + crni - I( __f,,,, v) + + % + (2.2) 

1 

&l. 

?ipp = ci 

i a+, “iy -- - 

f’ &J 
c $y -p 

I 
(2.3) 

sin cp (i = 1, 2) 
riss = c i c R - p cos cp % I 

(2.4) 

Introducing the changes of variable from (1.4) into (2.2) to (2.4) and taking into 

account the smallness of the neighborhood, we obtain the following relations : 

(2.5) 

(i = 1, 2) 
(2.6) 

2Gi 
‘i(P - mi _ 2 et 

&L. 

(4 - I) $ + (mi - 1) 7iip - % I 
z. = Giet 

auip aui, 

lP9 ----z--u’ acp 3 w ’ zisp 
z t&t? % 

Upon satisfying boundary conditions (2, l), we obtain a system of homogeneous equa- 
tions in et J and D i j C@Ll (R + 1) + CD = 0, C,,m, (k - 1) f C,, = 0 (2.7) 

C,im, (k + 1) cos (k - 1) a2 ‘+ Cpzm, (k $- 1) sin (k - 1) a2 + C,, cos (k $ 1) a2 -)_ 

+ C,, sin- (k + 1) az = 0 

-f&me (k - l)sin (k - l)ol, + Czzmn (k - 1) qos (k - 1) a, - C,, sin (k + 1) a, 4 

+- C,, cos (k -;t- 1) a2 = 0 

C,, (m,k - 3m, + 4) cos (k - l)a, + C,, (mlk - 3nll + 4) sin (k - 1) dl $ 

+ C,,cos (k + 1) u1 +C14 sin (k + 1) a, - Czl (m,k - 3rn, i_ 4) cos (k - 1) a, - 

‘C,, (mzk - 3m, + 4) sin (k - 1) a1 - Cz3 cos (k + I)&, - C,, sin (k -+ l)a, = 0 

--cl1 (WQ k + 3m, - 4) sin (k - 1) a, + C,, (~,k + 3m, - 4) cos (k - 1) aI - 

-C~,sin(~~t)a,_tC,,cos(X-~1)a~+Cn~(~f~12+3~~~~-4)sitl(h.-l)a~- 

-cczz (m,k $3,>1, - 4) COR (k - 1) a1 -t c,, sin (k + 1) a1 - Co4 cos (h- + 1) a, = 0 

G, [CI1~~~l (k + 1) cos (k - 1) a, -I- ( :l,r~rl (k + i) sill (k - 1) a, + C,:, cos (k + l)a, t_ _ 

-f- C,, sin (k + 1) aI1 - C, [Cp1~~~2 (k + 1) cos (Ii - l)aI+C,,rn, (k + 1) sin (k-l)al + 

+ C,, COS (k -t l)a, -+ C,, sin (/i + 1) CL,] = 0 (2.8) 
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G1 I- Cli% ( k - 1) sin (k - 1)a, + C,,rut (k - 1) cos (k - 1) aI - C,, sitr (k + *)a,+ 

+ C,, cos (k + 1) atj -- C, f --C,,~if, (k - l)sin (k - 1) a1 + 

+ Czznlz (X - 1) cosj (k - l)a, - Co, sin (X + I)a, + (& cos (k -j- 1)atj = 0 

u 0, II = I),, cos k,a, - /j2? sir1 k,cc, = 0 (2.9) 

U,, sin k,a, + _I& cos k,a, - LL1 sin k,a, - 1),, cos k,a, = 0 

C, (U,, cos k,a, - D,, sitt k,a,) - G2 (ILL1 cos k,a, - I& sin krar) = 0 

Setting the determinant of the system (2. 8) and (2.9) equal to zero, we obtain. after 
some manipulation, the characteristic equations in k and hl 

C1* (51’ [sins kal - kZsin2al] + G3 (‘Gj2 [sin2 k (a~ - a,) - kzsin2 (a$ - a,)] + 

+ (“2; GI)%~ . 
sm2 kul - k2 sin2 aI] [sin2 k (az-- a&-k2 sin2 (a?--al)]+ 

ml -1 m2--1 
4 2C1Gz n, - ms-- [sin k (a? - c(1) sin kal cos ka2 - kssin al sin (alt - at) cos az] + 

m+ - 1 
+ G, (G, - Gt) T [sin2 kal - ka sin2 aI] sin2 k (a2 - al) + 

(2.10) 

+ G2 (G - Gel e [sin? k (a2 - al) - k2 sin2 (a2 - arfj sina kal = 0 (k > 01 

G2 cos k,a, sin k, (a2 - a,) + G, sinkta, cos k, (a2 - al) = 0 (k, > 0) (2.11) 

Now consider the case of k= 0 . IJpon satisfying the boundary conditions (2.1). we 

obtain a system of equations in &‘ij from which it follows that &‘il =&‘ia = 0, .!$~a =&‘~a 
Ea* =.,8x* , with Ei;! and El4 being independent arbitrary constants. The components 
of the displacement vector are given by 

Uzp = (LIP = E’,, coscp + E’,, Slllcp, rlq7 = UIO = E,, cosrp - E:‘,, situp (2.12) 

It is easily seen that the expressions in (2.12) represent rigid body displacements. 
Similarly, for kl = 0, we have & = 0, F2z = I& , and the solution ill, = 21% = Flz 

also represents a rigid body displacement , 

Thus, the cases k- 0 and kl = 0 are of no interest in the problem at hand. We will 

now investigate the solutions corresponding to positive values of k and kl, defined by 
the realtions (2.10) and (2.11). 

In the most prevalent case of contact between two bodies, for Ul = $rJ and a2 = &? , 
investigation of the singularity of the solution in the neighborhood of edge &?(Fig. 2) 
yields the characteristic equations in k and kl , 

(2.13) 



198 0. K. Aksentian 

1il.Z k1.x 
Gs CI)S --;;-sin iitrt + Gt 5111 7 C~IS kl~ = ii (2.14) 

Let us now examine the case of a homogeneous plate the side surface of which makes 
an angle a with the plane of the face. This case may be obtained by setting G,= ($ = G, 
m, =m, =m and an = 01 in the relations previously derived. The characteristic equa- 

tions take the form 
\.__ 

.‘\ sin2 ku - k-2 sirPa = 0 (h- > 6) (2.15) 
sin k,u = 0 (k, > 0) (2.16) 

sq,. Whereupon, Equations (2.8) and (2.9) yield 
A 

oh\ 
$ 

~ 

\:‘:, 
Clj = C,j, Dlj = D2j 

,,,&. ?$ Setting 
$ _% Ctj = C,j = Cj, Dlj = Dfj = Di 

‘4:. 
we obtain a system of equations for the constants cj and B, 

;. 
C, = --C,m (k + I), C, = - &rn (k - 1) (2.17) 

Cl (k + 1) sin ka sin a -j- C, (sin ka cosa - k sin a cos kz) = 0 

Fig, 2 Cr (k sin a cos ka + sin ka cos a) + Cz (k - 1) sin ka sin a = 0 

D, = 0, D,sin kla = 0 (2.18) 
It is easily found by taking note of (2.15) that, for all a# TT in the interval (0. ZTT), 

the rank of the matrix of system (2.17) is three, while for a = n and a = 27T the matrix 
is of rank 2. Hence, the case U = ll and U = 27T will be examined separately, For 
0 <a cTT and TT <a < 215, we have (2.19) 

C, (k - i) e -c, (kcot kc4 -+ wtu), c, = -Cp (k + I), C, = C,m (k wt ku Q fat a) 

Then we obtain for the components of the displacement vector, when 0 ccl <X and 

n<a<tzn 

UP 
= Cpkf(mk - 3m + 4) (k - 1) cos (k - I) q - (mk - 3m f 4) (k cot ka + 

+ cot a) sin (k - i)cp - m (ka - 1) cos (k + 1) cp f 

+ m (k - 1) (k WI ku + 001 a) sin (k + 1) cpl (2.20) 

% r= Cpk [ -(mk + 3m - 4)(k - 1) sin (k - l)cp - (mk + 3m - 4)(kmt ku -b 

.+ cot a)cos(k - i)cp + m (P - 1) sin (k + 1) pi + 

+ m (k - 1) (k mt ha -+ art a) cos (k -f- 2) 9rl (2.21) 

u, = D,pb cos kicp (2.22) 

Here k and h1 are determined from relations (2.15) and (2.16), respectively. 

If a = TT , the characteristic equations for k and kl are 

sin kn = 0, sin kgs = 0 (2.23) 

i, e. k and &I are positive integers. Clearly, in that case the stresses in the neighbor- 
hood of the edge are finite, as expected . 

For 0, = 2?7, the characteristic equation for k and &t are 

sin 2kn = 0, sinZJccn = 0 (2.24) 

Evidently, in this case, as the plate edge is approached, the stresses increase without 

bounds, except for k = f or kl = f l The displacement vector components are here 

given by 

u* = l/s V;F; (- CJ(5m - 8) cos Ya ‘p + 3m co9 V, Erp] + 

+ CI [(5m - 8) sin Va ‘p -/- m sin s/s ~1) 
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- 
u. = I/* Jfp {Cl[(7f~b - 8) sin 1/z v -t 3 ITI sin V2 q] + 

+ cz [(7m - 8)cos ‘/s cp + m co.& cpl} 

ug = 11, I/pcos 112v (2.25) 

Thus, when the surfaces r and & are unloaded in the neighborhood of the edge, the 

singularities are of the form ok-1 or l?‘-‘, where k and k, are obtained from (2.10) 

and (2.11). 

3, Now let the surfaces r and rn be rigidly clamped in the neighborhood under 
consideration, l. e. 

u IP =u =u I’p 1% = 0 (cp = 01, ulp = u,~ = uSg = 0 (V =a4 (3.1) 

0 =Z=U l4 =U 
I’p ==6 a’p’ z 

IPQ 
=T 

tPQ ’ 
z . x7 

,SQ *SQ’ 
24 

IP 
=U 

rP ’ 
u 

IQ 1Q’ 18 2s 07 = ad 

Satisfying these conditions for k > 0 and kl > 0 in a manner similar to the above, 
we obtain a system of homogeneous equations in c,, and D,, . Setting the determinants 
of these systems equal to zero, we obtain the characteristic equations for k and kl 

CI’(~~)l[si3k.l-(~)asinz a,] + 

+ Gr’ ( Gi2 [sine k (a2 - al) - i3s)’ sina (az - a,)] + 

+ (~)2[sin2kar-(~4)2sina a~]jsinzk(ae-ar)-(~)2 x 

x sin” (aa - ad 1 m,--1 
- Gz (Gz - Cl) 3m, _ 4 

[ 
sin2 kal -(&)ryinzar]sinsk(a,-ai)- 

- Gr (Cl - Gz) 3s [sin2 k (a2 - aI) - (&)” sins (as - ar)] sin* kal + (3.2) 

+ 2GlGz 
ml-1 mz-i 

__ I 3ml - 4 Am, - 4 sin kal sin k (a2 - al) cos kaa - 

ml m2 

- 3q3m3m2-4 k2 sin a1 sin (a2 -al) cos aI 1 = 0 (k>O) 
61 cos krar sin k, (a, - aI) + Ga sin kp, cask, (at -a,) = 0 (k, > 0) (3.3) 

If either of the quantities k or kl is taken equal to zero, then the corresponding dis- 
placements become zero, as expected. Hence, hereinafter we will assume k and kl 
to be positive. 

For a, = lfz n, a, = 3/S n (Fig. 2), the characteristic equations are 

G2a (e4)” [sin? p - (&)8]+ Gra (3s)asinskn + 

Gz - G1 2 
+ (7) [sin8 $ - (&)2] sin2 kn - Gz (G, - G,) g [sin’ q - 

- (&)a] S~JI~ kfl - G1 (G1 - G.J G sin2 kn sin2 $ + 

+ 2G1Ga 
ml-1 ma--l -- 

3ml- 4 3ma - 4 sin @- sin kn: cos 3/2” = 0 2 2 (k> 0) (3.4) 

GI cos %f sin kg + Gz sin ‘$ cos kin = 0 (kl > 0) (3.5) 
If the plate material is homogeneous. we have the following equations in k and kl : 
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sinaka-(&rsinaa=U (k>(l) 

sin k,a = 0 (k, > 0) 

The equations for C, and D, , forO<CX<‘rr andn<<a<‘Ln,become 

c, = - (mk - 3m + 4) Cl, C, = -(mk i_ 3 ,)I - 4) Cz 

Cl (mk - 3m + 4) - C, [mk cot ka + (3m -- 4) cot a] = 0 

C, (mk wt ku - (3m - 4) cot a] + C, (nrk + 3~ - 4) = 0 

Dz = 0, D, sin k,a = 0 

It is not difficult to show that if 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

1% nn* 
a=,;_-2 ~2.. (n = 1,2,3) (5 12) 

then both coefficients in Equation (3.10) vanish for k = -(3172 - 4)/m , which turns out 
to be a root of Equation (3.6) in this case. ‘Thi coefficients in (3. 9) are nonzero for 
k= -(z-m-4)/m, but if m 

Il.5 
a 2 Zc,-<j-) -F (n = 1,2,3, . ., 7), (3.13) 

both become zero for k = (3m -q/m, 
Hence, when CL satisfies condition (3.12). the following formulas must be used for 

determining up and up, when k = -(WZ -4)/m : 
am-4 -_ 

up=-cp 
m 

CC 

3m - 4 
cot CL + cot, 

4(na - 1) 
----a cos ___ m m 

cpf2sin 4(m=1)q - 
m 

t 
3m-4 

cd u + cot 
1 

2 (m - 2) 
- ,I- a cos ,n 9 I 

(3.14) 

Rm-4 -- 

=cp m 
! 

3m-4 

% cot a + cot ----a sin 112 j 

2 (m - 2) 
m ‘p 

For all values of k different from -(3m -4)/m but satisfying (3.12) as well as for 

arbitrary k not satisfying (3.12). the displacements up and uW are given by 

up = Cpk((mk - 3m f 4) (mk + 3m - 4) cos (k - 1)cp - (mk - 3m + 4) [mk&a - 

- (3m - 4) cot;r] sin (k - 1) cp - (mk - 3m + 4) (mk + 3m - 4) cos (k + i)q + 

+ (mk + 3m - 4) [mk cot ka - (3m - 4) rcoca] sin (k + l)cp} (3.15) 

% = <p” {- (rttk + 3m - 4)3 sill (k - 1) cp - (mk $- 3m - 4) [mk cot’kcc - 

-(3m - 4) mt,a] cos(k - l)cp + (mk - 3m + 4) (mk + 3m - 4) sin (k + l)cp + 

-t_ (mk + 3m - 4)(mk cot Isa - (3nt - 4) cot a] cos (k f 1) (p} 

The displacement Us for arbitrary 0 CCL <TT and Ty <a < 2lJ is given by 

US = D,p Irt sin k,cp (3.16) 

If CL = ll , the stresses in the neighborhood of the edge are finite for this problem also, 
as one might expect. 

For CI. = 2TT , the characteristic equations for k and kl are 

sin 2kn = 0 (k > oh sin2k,n = 0 (k1 > 0) (3.17) 

As in the preceding case, the associated stresses increase without bounds as the edge 
of the plate is approached, except for k = 4 or kL = f . The expressions for the dis- 
placements in this case are 
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up = I/:! f&.- c, (Stu - 8) {cos I/, cp - cos ?* fp} + C$ [(5m - 8) sin ‘12 cp - 
(3.38) 

- (7nr - 8) sin Y;l 91) 

uc? -‘- ‘1~ jfc ;c, [(7 ~1 - 8) sin I!2y - (5~ - 8) sin 3!?: ~1 $- 
-i c, (7rri - 8) (Me l/?Tp - rof; 3/z q!)>, Its = D2 J$sin 1/a q 

Thus, in the case of rigidly clamped surfaces rand rn , the stresses in the neighbor- 

h&d of the edge have singufarities of the form [G-I and ~?l--i~ where h: and k~ are 

given by relations (3.2) and (3.31, respectively t 

We now consider two more sets of boundary conditions. In the first case,. the 

surface f is free while the surface rz is rigidly ciamped. In the second case, the surface 
r, is free while the surface r is clamped. Proceeding as before, we obtain, in the first 

case, the characteristic equations for positive k and ,+%I 

G2 cos h,ar cos k, (a2 - aI) - Cl sin k, a1 sin k, (a2 - al) = 0 (4.2) 

The characteristic equations for the second case may be obtained from Equations (4,l) 
and (4.2) by interchanging Ctl r LQ, CT& with cC2-cCl , m, , Cl& , respectively. For k = 0 
or kx = 0, the corresponding displacements again vanish. 

For the case of contact between two bodies as shown in Fig. 2, the characteristic equa- 

tions for k and k1 may be obtained in a similar manner from Equations (4.19 and (4.2) 
by setting CLJ_ = &R and C& = $lJ . In investigating a homogeneous plate, the equations 
for k and kl are for both cases 

/r (MZ - 1)’ - m2k2 sin* x 
sin2 ku -- - 

nt {&Z - 4) = 0, MIS kIa = 0 (4.3) 

The components of the displacement vector for both the first and second case of a 
clamped surface are 

% = l&A cos k,rp (4.4) 

UP 
= Cpfi[ P,,(a) (w,$ - 3nz + 4) cos (k - 1) q -j- R,,. (a) (mk - 3m _I- 4) sir! (k - l)rp - 

- PA‘ (a) (mk - 3 IR $. 4) cos (k + 1) cf - ilk (a) (mk + 3nt - 4) sill (k -+ 2) rp] 
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Here 11~ = /)&I sin &cp (4.5) 
Lh. (a) = (t?Zli - 2m -t 2) sin a cm ka + (m -‘2) cosa silt ka 

M,,(a) = (mk - m + 2) sina sin ka - 2 (m - 1) cosa cos ka (4.6) 

PI, (a) = (mk + 2m - 2) sina cos ka Q (m - 2) cosa sin ka 

RI, (a) = (mk - m + 2) sin a sin ha + 2 (m - 1) cosa cos ka 

Thus, for the cases of mixed boundary conditions examined above, the stresses in the 

neighborhood of the edge have singularities of the form p”-l or pr’I_‘, where k and 
kl are obtained from equations. of the form (4.1) and (4.2) . 

In conclusion, let us note that the characteristic equations (2.15), (3.6) and (4.3) for 
a homogeneous plate coincide with the equations obtained by Ufliand [7] in investigating 

the corresponding problems for a plane wedge. This is only natural, for clearly the 
method at hand divides the procedure for finding the solution to the posed three-dimen- 

sional problem into solving one separate problem for the displacement vector component 
ug and another problem for the components np and I,_+. the latter being the same 

as for a plane wedge. The singularity for the torsion problem could not, of course, be 
developed in [7]. 
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